Estamos bem avançados nesse ponto em que chegamos na teoria dos conjuntos. Isso é muito bom. Agora, nesse post, vamos misturar um pouco de tudo que vimos: união, interseção, diferença de conjuntos e conjunto complementar. Veremos nesse post propriedades do conjunto complementar envolvendo a união e a interseção de conjuntos. Vamos demonstrar algumas dessas propriedades a fim de justificá-las para que sejam melhor compreendidas. O bom de fazer demonstrações é poder ver como a matemática funciona, o que é simplesmente sensacional (pelo menos para mim... hehe). Vamos lá!
Propriedades de conjunto complementar
Considere três conjuntos $A$, $B$ e $C$ tais que $B$ e $C$ são subconjuntos de $A$. Valem as seguintes propriedades:
1. $C_A^B \cap B = \emptyset$
2. $C_A^B \cup B = A$
3. $C_A^{A} = \emptyset$
4. $C_A^{\emptyset} = A$
5. $C_A^{C_A^B} = B$
6. $C_A^{B \cap C} = C_A^B \cup C_A^{C}$
7. $C_A^{B \cup C} = C_A^B \cap C_A^{C}$
Vamos fazer a demonstração de algumas dessas propriedades.
Demonstração da propriedade 2: Para mostrar que $C_A^B \cup B = A$ devemos mostrar que $C_A^B \cup B \subset A$ e que $A \subset C_A^B \cup B$ (definição de igualdade de conjuntos). Vamos mostrar a primeira inclusão. Considere $x \in C_{A}^B \cup B$. Desse modo, $x \in C_{A}^B$ ou $x \in B$. Sendo assim, $x \in A-B$ ou $x \in B$. Note que, em qualquer um desses casos, $x \in A$, pois $B \subset A$. Logo $x \in A$ e a primeira inclusão segue. Vamos passar agora à segunda inclusão. Considere $x \in A$. Temos que $B \subset A$. Assim, temos duas possibilidades para $x$, ou $x \in A-B$ ou $x \in B$, isto é, ou $x \in C_{A}^B$ ou $x \in B$. Pela definição de união de conjuntos $x \in C_{A}^B \cup B$. Logo, a segunda inclusão é verdadeira. Portanto vale a igualdade $C_A^B \cup B = A$.
Demonstração da propriedade 5: Vamos mostrar que $C_A^{C_A^B} = B$. Para fazer isso, precisamos mostrar que $C_A^{C_A^B} \subset B$ e que $B \subset C_A^{C_A^B}$. Vamos começar mostrando a primeira inclusão. Seja $x \in C_A^{C_A^B}$. Desse modo, temos que $x \in A - C^B_A$, ou seja, $x \in A$ e $x \notin C^B_A$. O fato de $x \notin C^B_A$, implica $x \in B$, pois do contrário, teríamos $x \in A-B$, o que nos daria $x \in C_A^B$. Temos então que $x \in A$ e $x \in B$. Como $B \subset A$, segue $x \in B$. Logo, está provado que $C_A^{C_A^B} \subset B$. Mostraremos agora a segunda inclusão. Considere $x \in B$. Desse modo, $x \notin A-B$, ou ainda, $x \notin C_A^B$. Já sabemos que $B \subset A$, assim, $x \in A$. Temos, então, que $x \in A$ e $x \notin C_A^{B}$. Sendo assim, pela definição de diferença de conjuntos, $x \in A-C_A^{B}$ e, pela definição de conjunto complementar, obtemos $x \in C_A^{C_A^B}$. Logo, a inclusão $B \subset C_A^{C_A^B}$ é verdadeira. Portanto, segue a igualdade $C_A^{C_A^B} = B$.
Demonstração da propriedade 7: Para justificarmos a igualdade $C_A^{B \cup C} = C_A^B \cap C_A^{C}$, temos que provar as seguintes duas inclusões $C_A^{B \cup C} \subset C_A^B \cap C_A^{C}$ e $C_A^B \cap C_A^{C} \subset C_A^{B \cup C}$. Vamos provar a primeira inclusão. Considere $x \in C_A^{B \cup C}$. Desse modo, $x \in A-(B \cup C)$, ou seja, $x \in A$ e $x \notin B \cup C$. O fato de $x \notin B \cup C$ implica $x \notin B$ e $x \notin C$, pois se uma dessas afirmações não fosse verdadeira, teríamos $x \in B \cup C$. Logo, temos que $x \in A$, $x \notin B$ e $x \notin C$. Como consequência disso, temos que $x \in A-B$ e que $x \in A-C$, ou seja, $x \in C_A^B$ e $x \in C_{A}^C$. Usando a definição de interseção de conjuntos, segue que $x \in C_A^B \cap C_A^C$. Assim, obtemos a inclusão $C_A^{B \cup C} \subset C_A^B \cap C_A^{C}$. Vamos mostrar agora a segunda inclusão. Seja $x \in C_A^B \cap C_A^{C}$. Desse modo, $x \in C_A^B$ e $x \in C_A^C$. Pela definição de conjunto complementar, segue que $x \in A-B$ e $x \in A-C$. Isso nos dá que $x \in A$, $x \notin B$ e $x \notin C$. Como $x \notin B$ e $x \notin C$, segue que $x \notin B \cup C$. Sendo assim, temos que $x \in A$ e $x \notin B \cup C$. Pela definição de diferença de conjuntos, obtemos $x \in A - (B \cup C)$, ou ainda, de forma equivalente, $x \in C_A^{B \cup C}$. Logo, a inclusão $C_A^B \cap C_A^{C} \subset C_A^{B \cup C}$ está provada. Portanto, vale a igualdade $C_A^{B \cup C} = C_A^B \cap C_A^{C}$.
Gostou do conteúdo dessa postagem? Foi útil para você? Tem alguma dúvida? Deixe um comentário.
0 Comentários:
Postar um comentário